

FABRICATOR: A DECLARATIVE FEATURE PLATFORM

Hebo Yang, Kunal Shah 6/12/2024

FABRICATOR: A DECLARATIVE FEATURE PLATFORM AT DOORDASH

Agenda

Machine Learning at Doordash
 Feature Platform Journey
 Fabricator: overview
 Architecture deep dives
 Results and learnings

MACHINE LEARNING SYSTEM

Hidden Technical Debt in Machine Learning Systems - Google 2015

MACHINE LEARNING PLATFORM **DOORDASH**

Centralized team to accelerate the ML development velocity

MACHINE LEARNING PLATFORM **DOORDASH**

Centralized team to accelerate the ML development velocity

- Simplify & reduce complexity in ML development process
- Provide needed infrastructure
- Built once and leveraged by multiple ML & DS teams within the company

MACHINE LEARNING PLATFORM TOORDASH

Centralized team to accelerate the ML development velocity

- Simplify & reduce complexity in ML development process
- Provide needed infrastructure
- Built once and leveraged by multiple ML & DS teams within the company

FABRICATOR: DECLARATIVE FEATURE PLATFORM AT DOORDASH

Agenda

Machine Learning at Doordash
 Feature Platform Journey
 Fabricator: overview
 Architecture deep dives
 Results and learnings

FEATURE PLATFORM

Looking back when we started in 2021

OUR LEGACY SYSTEM

- Efficient feature store
- ETL framework with a robust warehouse
- Manual steps for everything else

PAIN POINTS

Fragmentation hampers velocity

 Data Scientists have to interface with many loosely coupled systems Infrastructure evolution is slow

 Improving best practices and integrations takes way too long

No control plane

• Maintaining features requires more than just code

WHAT DOES AN IDEAL PLATFORM LOOK LIKE?

- Single entrypoint
- Semantic feature representation
- Simplified abstractions
- High iteration velocity
- Automatic feature lifecycle management

ARCHITECTURE OF AN IDEAL PLATFORM

FABRICATOR: DECLARATIVE FEATURE PLATFORM AT DOORDASH

Agenda

Machine Learning at Doordash
 Feature Platform journey
 Fabricator: overview
 Architecture deep dives
 Results and learnings

FABRICATOR VISION

Enable Data Scientists to **declaratively** define **efficient end-to-end** feature pipelines and automate the operational life cycle of features

Centralized Declarative Registry

An entrypoint that allows ML practitioners to define E2E feature semantics in simple abstractions

Unified Execution Environment

An execution environment with simple APIs for high iteration velocity

Infrastructure Automation

An automated integration for all other downstream operations

FABRICATOR ARCHITECTURE

- Registry as central entrypoint
- Unified execution env for dev and prod
- Infra automation for downstreams

FABRICATOR: DECLARATIVE FEATURE PLATFORM AT DOORDASH

Agenda

Machine Learning at Doordash
 Feature Platform journey
 Fabricator: overview
 Architecture deep dives
 Results and learnings

- Simple YAML definitions for feature semantics
- Protobuf backed schema for YAML objects
- DB backed service for global access for definitions
- Continuously deployed for every change

Feature Semantics

An E2E pipeline requires only a few YAML definitions.

- Source
- Sink
- Feature

```
sources:
 - name: consumer_engagement_features
    storage spec:
      type: DELTA LAKE
     table name: consumer engagement features
    compute spec:
     spark spec:
        file: consumer_engagement_features.py
        resource_overrides: ...
      trigger_spec:
        upstreams:
            table_name: consumer_clicks_raw
   metadata_spec:
     user: ads-ml
     description: ...
feature_groups:
 - source: consumer_engagement_features
    features:
     - name: caf_consumre_clicks_p30d
        description: ...
     - name: caf_consumre_conversion_p30d
   materialize_spec:
     sink: ads_redis
```

Datasets

The registry also supports generating intermediate, training and validation datasets

```
sources:
```

```
- name: consumer_engagement_base
  storage_spec:
    table_name: consumer_engagement_base
    timestamp_column: active_date
    compute_spec:
      sql: >-
          select
            '{active_date}'::date as active_date
          , consumer_id
          from ...
          where ...
    trigger_spec:
      schedule: "0 6 * * *"
```

Benefits of the Design

Evolution is easy

Protobuf based backend makes our definitions robust to extension

Support for infrastructure flexibility

New storage and compute paradigms can be adopted without significant shifts

Global availability

Every downstream has immediate access to definitions

UNIFIED EXECUTION ENVIRONMENT

- Library suite that bridges registry and infrastructure
- Enables contextual executions of registry definitions
- Provides black box optimizations

UNIFIED EXECUTION ENVIRONMENT

Contextual Executions

Pythonic wrappers around YAML definitions designed to "execute" the YAMLs efficiently


```
class SparkFeatureUpload:
    def __init__(self, context: FeatureContext):
        self.context = context
        self.df = None
```

context = FeatureContext.from_source("consumer_engagement_features")
job = SparkFeatureUpload(context)
job.run()

UNIFIED EXECUTION ENVIRONMENT

Benefits of the Design

Most jobs are no-code

Unless you need customizations, same code executes multiple YAMLs High fidelity testing

Notebook clusters mimic production job setup.

Efficient execution

Users don't have to optimize for different storage or compute choices

A central registry and a unified library suite to provide every downstream integration to a feature definition for free

- Orchestration
- Online Serving
- Feature Discovery

- name: consumer_engagement_features Orchestration storage_spec: type: DELTA_LAKE table name: consumer engagement features Automated DAG compute_spec: spark_spec: file: consumer_engagement_features.py construction resource_overrides: ... table_name: consumer_engagement_base Date partitioning ۲ G cng_pick_sco__v3_st_features B cng_pick_sc__v3_dsh_features cng_pick_sco._b_dsh_features E cng_pick_sc__dsh_st_features G cng_infp_v3_predictions ● 430 O 999+ ▲ 0 • 430 O 999+ A 0 • 432 O 999 • 432 O 999 • 460 O 971 Scalable and • 1431 1022 cng_pick_sco._item_base_data ● 409 O 999+ ▲ 0 parallelized 1,431 partitio backfilling Gor nick - dsh output scores Run duratio • 355 O 999+ 25,000 20,000 15,000

Online Serving

 Automate materialization of features to our scalable feature store

Feature Discovery

- Automate registry synchronization with data catalogs
- Registry enables metadata extractors

Catalog		ŝ	C	+
ml	(8	∇	~
∽ 🗌 da	talake			
~ 🖯 n	h			
	active_campaign_uti	lizati	on_ge	en
	adgroup_expected_t	raffic	2	
	ads_sl_business_lan	dsca	pe_fc	or
	ads_sl_business_lan	dsca	pe_fc	or
	ads_sl_business_lan	dsca	pe_fc	ør
	ads_sl_target_roas_	v1		
	ads_sl_target_roas_	v2		
	aggregated_dropoff_	_state	S	
	aov_consumer_subm	narke	t_agg	Jr
	aov_store_quantiles_	_aggr	egate	ed
	assignments_route_a	anno	tation	
Ξ	ax_custom_impressi	on_ra	atios_	v1

Catalog Explorer > datalake > ml >

\blacksquare datalake.ml.consumer_business_engagement_history \Rightarrow

Overview	Sample Data	Details	Permissions	History	Lineage	Insights	Quality
Q Filter	columns						

Column	Туре	Comment	Tags
,₽ active_date	string	(*)	(*)
consumer_id	string	(*)	(*)
business_id	string	(*)	(*)
daf_b_cs_business_lif	int	(*)	(*)
business_last_order_d	string	(*)	(*)
business_first_order_d	string	(*)	()

FABRICATOR: DECLARATIVE FEATURE PLATFORM AT DOORDASH

Agenda

Machine Learning at Doordash
 Feature Platform journey
 Fabricator: overview
 Architecture deep dives
 Results and learnings

FEATURE PLATFORM

Flashing back when we started in 2021

FEATURE PLATFORM

Current daily scale on Fabricator

systems

Adoption was slower when users interfaced with systems, rather than a single product

Make it easy to do the right thing

Simplify the most common patterns, and leave room for customization

Build for Integrations

Scale beyond one team by actively integrate with other services

Declaratively feature pipelines

• Very easy to author feature jobs

Declaratively feature pipelines

- Very easy to author feature jobs
- Warehouse cost and compute contention
- Spark job performance & cost

• Abandoned jobs

Declaratively feature pipelines

- Very easy to author feature jobs
- Warehouse cost and compute contention
 - team warehouses & queue
- Spark job performance & cost

• Abandoned jobs

groups:
<pre>- name: ml-platform email: team-ml-platform@doordash.com slack_user: C043KKYL09H # eng-ml-mdp-alerts warehouse: ML_FEATURE_SERVICE vertical: Data Platform</pre>
members:… - name: ads-econ…
<pre>- name: ads-ml slack_user: C030M52NTA7 # ads-data-monitoring warehouse: ETL_BATCH_ANALYTICS_ADS_HIGH vertical: Ads members:</pre>
- name: tony.x
- name: andy.t

Declaratively feature pipelines

- Very easy to author jobs
- Warehouse cost and compute contention
 - team warehouses & queue
- Spark job performance & cost
 - spark tuning guidelines
 - auto optimizations
 - attribution & reporting
- Abandoned jobs
 - auto disable failing jobs
 - lineage with active model

Fabricator Notifications APP 8:13 AM Fabricator SLO report for 2024-05-29 search-eq-eng *Total Pipelines: 96 66 pipelines were triggered and run successfully today. 2 pipelines missed the daily trigger: - fact_store_hero_image | dagit | db - global_search_store_ranking_training_data_v8_3 | dagit | db Debug and Resolve : Pipeline-Missed-Daily-Trigger 5 pipelines failed once today: - argo_logs_food_item_l1_features_v1 | dagit | db

- fact_core_search_query_store_agg | dagit | db
- fact_core_search_relevance_query_metrics | dagit | db
- global_search_sibyl_logs_all_fields_ltrv8_2 | dagit | db
- store_top_ordered_items_bert_v2_emb | dagit | db

Debug and Resolution : Pipeline-Failed-Today

23 pipelines may potentially be disabled:

- argo_logs_store_text_match_features_v1 | dagit | db
- consumer_retail_item_aggregated_rating_metrics | dagit | db
- fact_core_search_relevance_query_business_metrics | dagit | db

Auto backfill downstream jobs to create historical data for model training

• Improved dev velocity

Auto backfill downstream jobs to create historical data for model training

- Improved dev velocity
- High complexity and cost
 - explicit flag to trigger downstreams

Three core components

- Feature Registry
- Unified Execution Environment (Library Suite)
- Infrastructure Automation (Orchestration & Integrations)

Three core components

- Feature Registry
- Unified Execution Environment (Library Suite)
- Infrastructure Automation (Orchestration & Integrations)
- Single entry point, end-to-end experience
- Complexity & error detection
 - Categorize errors
 - Analytical metrics in addition to system observability

THANK YOU!

